FMFSP portāls

Izvēlne

Meklēšana

Aptauja

Vai tu esi apmierināts ar vēlēšanu rezultātiem?
Pavisam noteikti
Mazliet
Galīgi nē
Izcili vienalga

Rezultāti

Foto

2012. gada 2. decembrī 21:31 

Viltīgie naturālie skaitļi [1/2] (1)

Viltīgie naturālie skaitļi [1/2]
Straujiem soļiem tuvojoties sesijai, ir viegli aizmirsties matemātiskajās abstrakcijās, tādēļ dažreiz ir vērts atgriezties pie saknēm un vienkārši paspēlēties un padomāt par naturāliem skaitļiem. Lūk, Tev, dārgo lasītāj, dažas naturālas problēmas, par ko padomāt.

3n+1 jeb Kolatca (Collatz) problēma
Ņemam jebkuru naturālu skaitli, no kura iegūstam skaitļu rindu, sekojot šādiem noteikumiem: ja skaitlis ir pāra skaitlis, tad nākamais skaitlis ur puse no tā; ja skaitlis ir nepāra skaitlis, tad to trīskāršojam un pieskaitām 1 - tas ir nākamais skaitlis. Šādi turpinot, rinda vienmēr beidzas ar skaitli 1. Lai šo sakarību būt vieglāk izprast, lūk, arī daži piemēri. Diemžēl pierādījuma, ka tas tiešām ir spēkā jebkuram naturālam skaitlim, pagaidām nav. Tev ir iespēja pašam izmēģināt savus skaitļus, turklāt šī “kalkulatora” autori piedāvā to darīt arī binārajā, trijnieku un heksadecimālajā skaitīšanas sistēmās.

1. piemērs.
Pirmais skaitlis ir 16.
Iegūtā rinda: 16, 8, 4, 2, 1
2. piemērs
Pirmais skaitlis ir 15. Iegūtā rinda: 15, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1
3. piemērs.
Ja mēs sāksim ar skaitli 77671, lielākais skaitlis, ko sasniegsim, būs 1’570’824’736, bet skaitli 1 mēs sasniegsim pēc 232 soļiem.

Steinhausa cikls
Steinhausa (Steinhaus) cikls ir skaitļi 145, 42, 20, 4, 16, 37, 58, 89, kas vienmēr atkārtojas, ja rīkojamies sekojoši:
(1) Ņemam jebkuru naturālu četrciparu skaitli (abcd);
(2) Saskaitam šī skaitļa ciparu kvadrātus (a^2+b^2+c^2+d^2).
Rīkojamies ar iegūto summu tāpat kā ar sākotnējo skaitli. Atkārtojam šos aprēķinus. Šis process vienmēr nonāk vai nu līdz skaitlim 1, ar ko process beidzas, vai skaitlim 145. Tad vienmēr atkārtojas cikls 42, 20, 4, 16, 37, 58, 89, 145.


1. piemērs.
Ņemam skaitli 4363. Rinda: 70, 49, 97, 130, 10, 1, 1, 1, 1,...
2. piemērs.
Ņemam skaitli 9583. Rinda: 179, 131, 11, 2, 4, 16, 37, 58, 89, 145, 42, 20, 4, 16, 37, 58, 89, 145, 42, 20, 4, 16, 37, 58, 89, ...

Skaitlis 1089
(1) Ņemam jebkuru trīsciparu skaitli ar atšķirīgiem cipariem (abc);
(2) Izveidojam skaitļa «spoguļattēlu», sakārtojot ciparus pretējā secībā (cba);
(3) Atņemam no sākotnējā skaitļa «spoguļattēlu» (|abc-cba|);
(4) Saskaitām starpību un starpības «spoguļattēlu» (starpība=def, def+fed).
Rezulāts ir 1089.


1. piemērs.
(1) 836
(2) 638
(3) |836-638| = 198
(4) 198+891 = 1089
2. piemērs.
(1) 536
(2) 635
(3) |536 - 635| = 099
(4) 099+990 = 1089

Šo īpašību iespējams pierādīt, izmantojot elementāro matemātiku.
Izrādās, ka skaitlim 1089 piemīt vēl kāda interesanta īpašība. Ja reizināsim to ar skaitļiem no 1 līdz 9, pamanīsim kādu sakritību: 1 x 1089 = 1089 2 x 1089 = 2178 3 x 1089 = 3267 4 x 1089 = 4356 5 x 1089 = 5445 6 x 1089 = 6534 7 x 1089 = 7623 8 x 1089 = 8712 9 x 1089 = 9801. Salīdzinot pirmo iegūto rezultātu ar pēdējo, otro – ar priekšpēdējo utt., ievērosim, ka pēdējais rezultāts ir pirmā „spoguļattēls”, priekšpēdējais – otrā „spoguļattēls” utt.

Autors: Ingrīda Krūziņa  Apskatīt komentārus »

Atslēgvārdi: skaitļi
Ieteikt draugiemTweet this!

Balsis: 1, vidējais vērtējums: 5

Vārds: E-pasts vai web-lapa:

 

« Novembris, 2014 »

POTCPSSv
 12
3456789
10111213141516
17181920212223
24252627282930
1234567

Forums

Komentāri

Fizmatu blogi

Tīts Aleksejevs «Svētceļojums...
Ir jābūt ļoti īpašiem nosacījumiem, lai es iesprin.. (23.11)
Programmētāji – kā būtu ar nel..
Tuvojas Ziemassvētki un līdz ar tiem arī ikgadējā .. (21.11)
ChangeTip – mikromaksājumu sis..
Kādu laiku atpakaļ iekš Reddit pamanīju tādu inter.. (11.11)
balkāni numur 4...
Turpinam šo. Šis arī pēdējais stāsts. Izlemts vak.. (04.11)
2015. gada kalendārs (ar ekstr..
Ievērojot tradīciju, arī šogad sagatavoju maketu n.. (04.11)

Iz arhīva

hostings