FMFSP portāls

Izvēlne

Meklēšana

Aptauja

Brauci uz potenciālo biedru semināru "Faktoriāls"?
Jā, noteikti!
Vēl domāju..

Kas tas ir?

Rezultāti

Foto

2012. gada 2. decembrī 21:31 

Viltīgie naturālie skaitļi [1/2] (1)

Viltīgie naturālie skaitļi [1/2]
Straujiem soļiem tuvojoties sesijai, ir viegli aizmirsties matemātiskajās abstrakcijās, tādēļ dažreiz ir vērts atgriezties pie saknēm un vienkārši paspēlēties un padomāt par naturāliem skaitļiem. Lūk, Tev, dārgo lasītāj, dažas naturālas problēmas, par ko padomāt.

3n+1 jeb Kolatca (Collatz) problēma
Ņemam jebkuru naturālu skaitli, no kura iegūstam skaitļu rindu, sekojot šādiem noteikumiem: ja skaitlis ir pāra skaitlis, tad nākamais skaitlis ur puse no tā; ja skaitlis ir nepāra skaitlis, tad to trīskāršojam un pieskaitām 1 - tas ir nākamais skaitlis. Šādi turpinot, rinda vienmēr beidzas ar skaitli 1. Lai šo sakarību būt vieglāk izprast, lūk, arī daži piemēri. Diemžēl pierādījuma, ka tas tiešām ir spēkā jebkuram naturālam skaitlim, pagaidām nav. Tev ir iespēja pašam izmēģināt savus skaitļus, turklāt šī “kalkulatora” autori piedāvā to darīt arī binārajā, trijnieku un heksadecimālajā skaitīšanas sistēmās.

1. piemērs.
Pirmais skaitlis ir 16.
Iegūtā rinda: 16, 8, 4, 2, 1
2. piemērs
Pirmais skaitlis ir 15. Iegūtā rinda: 15, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1
3. piemērs.
Ja mēs sāksim ar skaitli 77671, lielākais skaitlis, ko sasniegsim, būs 1’570’824’736, bet skaitli 1 mēs sasniegsim pēc 232 soļiem.

Steinhausa cikls
Steinhausa (Steinhaus) cikls ir skaitļi 145, 42, 20, 4, 16, 37, 58, 89, kas vienmēr atkārtojas, ja rīkojamies sekojoši:
(1) Ņemam jebkuru naturālu četrciparu skaitli (abcd);
(2) Saskaitam šī skaitļa ciparu kvadrātus (a^2+b^2+c^2+d^2).
Rīkojamies ar iegūto summu tāpat kā ar sākotnējo skaitli. Atkārtojam šos aprēķinus. Šis process vienmēr nonāk vai nu līdz skaitlim 1, ar ko process beidzas, vai skaitlim 145. Tad vienmēr atkārtojas cikls 42, 20, 4, 16, 37, 58, 89, 145.


1. piemērs.
Ņemam skaitli 4363. Rinda: 70, 49, 97, 130, 10, 1, 1, 1, 1,...
2. piemērs.
Ņemam skaitli 9583. Rinda: 179, 131, 11, 2, 4, 16, 37, 58, 89, 145, 42, 20, 4, 16, 37, 58, 89, 145, 42, 20, 4, 16, 37, 58, 89, ...

Skaitlis 1089
(1) Ņemam jebkuru trīsciparu skaitli ar atšķirīgiem cipariem (abc);
(2) Izveidojam skaitļa «spoguļattēlu», sakārtojot ciparus pretējā secībā (cba);
(3) Atņemam no sākotnējā skaitļa «spoguļattēlu» (|abc-cba|);
(4) Saskaitām starpību un starpības «spoguļattēlu» (starpība=def, def+fed).
Rezulāts ir 1089.


1. piemērs.
(1) 836
(2) 638
(3) |836-638| = 198
(4) 198+891 = 1089
2. piemērs.
(1) 536
(2) 635
(3) |536 - 635| = 099
(4) 099+990 = 1089

Šo īpašību iespējams pierādīt, izmantojot elementāro matemātiku.
Izrādās, ka skaitlim 1089 piemīt vēl kāda interesanta īpašība. Ja reizināsim to ar skaitļiem no 1 līdz 9, pamanīsim kādu sakritību: 1 x 1089 = 1089 2 x 1089 = 2178 3 x 1089 = 3267 4 x 1089 = 4356 5 x 1089 = 5445 6 x 1089 = 6534 7 x 1089 = 7623 8 x 1089 = 8712 9 x 1089 = 9801. Salīdzinot pirmo iegūto rezultātu ar pēdējo, otro – ar priekšpēdējo utt., ievērosim, ka pēdējais rezultāts ir pirmā „spoguļattēls”, priekšpēdējais – otrā „spoguļattēls” utt.

Autors: Ingrīda Krūziņa  Apskatīt komentārus »

Atslēgvārdi: skaitļi
Ieteikt draugiemTweet this!

Balsis: 1, vidējais vērtējums: 5

Vārds: E-pasts vai web-lapa:

 

« Oktobris, 2014 »

POTCPSSv
 12345
6789101112
13141516171819
20212223242526
272829303112
34567 

Forums

Komentāri

Fizmatu blogi

12 mēneši 12 virtuves: Septemb..
Šis pasākums pamazām sāk izskatīties arvien neizda.. (20.10)
Izdevīgi lidojumi un viesnīcas..
Tālajā 2011. gadā Google prezentēja lētāko lidojum.. (20.10)
Īsfilma «Eksperts» un eksperta..
Latviešu autors un režisors Lauris Beinerts pirms .. (15.10)
SpectroCoin – vēl viens “viss ..
Kad pirms mēneša rakstīju par Coinbase ienākšanu L.. (13.10)
PHPNW14 – atskats..
Iepriekšējās dažas dienas pavadīju Mančesterā (Man.. (10.10)

Iz arhīva

hostings